

Copyright  REMICS Consortium 2010-2013

REuse and Migration of legacy applications to Interoperable Cloud
Services
REMICS

Small or Medium-scale Focused Research Project (STREP)
Project No. 257793

Deliverable D3.2

REMICS Recover Toolkit, Preliminary release
Work Package 3

Leading partner: Netfective

Author(s): Franck Barbier, Gaëtan Deltombe, Alexis Henry

Dissemination level: PU

Delivery Date: August 31st, 2011

Final Version: 1.0

Public

Copyright  REMICS Consortium 2010-2013 Page 2 / 18

Versioning and contribution history

Version Description Contributors

0.1 Initial version Franck Barbier

0.2 Reviewed version by Brice M. and Andrey S. Franck Barbier

1.0 Final version

Public

Copyright  REMICS Consortium 2010-2013 Page 3 / 18

Executive Summary
This document intends to comment on the D3.2 deliverable of REMICS that consists in a product (see
DoW). More precisely, D3.2 is a set of Eclipse Modeling Framework metamodels: Knowledge
Discovery Metamodel (KDM), Abstract Syntax Tree Metamodel (ASTM) and Extension of Knowledge
Discovery Metamodel (EKDM) that intend to be used in model-driven modernization tools. In REMICS,
BLU AGE® from Netfective, a proprietary tool, is used as a metamodel processor to cope with D3.2
metamodels:

• KDM: implementation is available from kdmanalytics.com;

• ASTM: ASTM.ecore (see also D3.1);

• EKDM: EKDM.ecore (see also D.1).

Accordingly, this document is a “Getting started with Extension of Knowledge Discovery Metamodel”
support to concisely explain how the D3.2 metamodels are used within the REMICS technology in
general and BLU AGE® in particular.

The metamodels here evoked are the KDM and ASTM standards along with an innovation: the EKDM
that has been built up for REMICS and is described in the D3.1 deliverable.

Public

Copyright  REMICS Consortium 2010-2013 Page 4 / 18

Table of contents
EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION ... 5
1.1 TERMINOLOGY AND ABBREVIATIONS .. 5
1.2 REQUIREMENTS TRACEABILITY ... 5
1.3 BLU AGE® REVERSE .. 6

2 USING EKDM WITH THE BLU AGE® REVERSE ENGINE ... 6
2.1 ARTIFACT COMPILATION ... 6

2.1.1 Specific model processing ... 7
2.1.1.1 Data .. 7
2.1.1.2 UIs .. 8
2.1.1.3 Code .. 9

2.2 FROM SASTM TO GASTM ... 11
2.2.1 Data generalization .. 11
2.2.2 UIs generalization ... 11
2.2.3 UIs extraction .. 12
2.2.4 Code generalization, example of COBOL statements ... 13

2.3 EKDM .. 14
2.3.1 Separation of “macro” and “micro” code representations ... 14
2.3.2 GASTM encapsulation within KDM... 14

2.3.2.1 “Macro” actions’ production... 14
2.3.3 Construction of mappings between code, UIs and data ... 15
2.3.4 Generation of relationships ... 16

APPENDIX I- LEGACY CODE .. 18

Public

Copyright  REMICS Consortium 2010-2013 Page 5 / 18

1 Introduction
The ADM task force of the OMG has released several standards to carry out MDD reverse
engineering activities and to support, more or less automatically, these activities in CASE tools.

In REMICS DoW, the strategy is to seek a maximum of compliance to OMG standards and, if possible,
to influence these existing standards through innovation and progresses made in REMICS/WP3 in
particular. For that, REMICS/WP3 reuses the KDM standard whose main and recognized
implementation is that from kdmanalytics.com.

More recently, the ADM task force has released ASTM in January 2011 to fill a gap in the daily use of
KDM for legacy code manipulation especially. As shown later in this document, ASTM complements
KDM regarding code issues. This document emphasizes code manipulation through KDM, ASTM and
the concomitant and coherent use of both through a REMICS homemade metamodel named
EKDM (Extension of KDM). These results from the absence of a clear and formal interrelation
specification between KDM and ASTM, a lack of experience/lessons learned in the daily use of
these cutting-edge technologies as well.

As primitive material, KDM, ASTM and EKDM cannot be used in a friendly way outside the scope of a
tool. In REMICS, BLU AGE® from Netfective, a proprietary tool, is based on this metamodel suite.
D3.1 document provides some information on KDM and ASTM along with the introduction and
specification of EKDM. In D3.2 (this document), a focus is on the use of EKDM in the context of the
COBOL programming language.

1.1 Terminology and Abbreviations
ADM Architecture-Driven Modernization

ASTM Abstract Syntax Tree Metamodel

CASE Computer-Aided Software Engineering

CRUD Create, Read, Update and Delete

EKDM Extension of KDM

EMF Eclipse Modeling Framework

KDM Knowledge Discovery Metamodel

MDD Model Driven Development

OMG Object Management Group

1.2 Requirements traceability
D3.2 is part of WP3 whose original objectives are:

a) to define an integrated method for knowledge discovery to extract business value information
from legacy including business models, components, implementation details and test
specifications;

b) to specify the KDM extension to support the method;

c) to develop tools that supports the REMICS Recover process.

D3.2 fulfils the requirements as follows:

a) See D3.1.

b) D3.1 gives an illustration of the utilization of
EKDM.

c) See D3.1.

Public

Copyright  REMICS Consortium 2010-2013 Page 6 / 18

1.3 BLU AGE® REVERSE
BLU AGE® provides an open and extensible approach to achieve extraction, discovery and
regeneration, from multiple types of legacy systems. BLU AGE® uses a model-based approach and a
metamodel-driven methodology:

• Match different requirements systems modernization, data integration, etc.

• Use models operations and facilities: transformations, weavings, extractions, etc.

• Support methodology for defining extensions of the core metamodel and plug-ins to enable
manipulating models, business rules, components/services, etc.

Figure 1 – BLU AGE® REVERSE process

Some trial versions and toy examples are downloadable from
www.bluage.com/index.php?cID=blu_age_reverse_modeling_us.

2 Using EKDM with the BLU AGE® REVERSE engine
This section intends to show a simplified usage of EKDM based on a legacy code piece in Appendix I.
This section is divided into three main parts: artifacts compilation, transformation of a specific model
into a generic model and production of an EKDM-compliant model.

2.1 Artifact compilation
The BLU AGE® REVERSE process is composed of several well-codified stages. The first one
amounts to extracting/collecting any information contained in the different artifacts (code, configuration
files…) of the legacy application/information system of interest. Extraction is similar to a compiler at
work. However, here, compiler outputs are models rather than executable code. Here is the
processing chain: legacy artifacts -> lexical analysis -> syntactical analysis -> semantic analysis ->
specific model -> generic pivot model. For that, grammars formalizing different languages are
required.

Figure 2 – Example of terminal symbols

Grammars are made up of terminal symbols (Figure 2), non-terminal symbols, axioms and production
rules (Figure 3).

Public

Copyright  REMICS Consortium 2010-2013 Page 7 / 18

Figure 3 – Example of the “Throught” (COBOL) production rule

Specific models resulting from the initial compilation stages are Abstract Syntax Trees (ASTs). Any
specific model is compatible with a homemade COBOL SASTM metamodel (see D3.1 about SASTM).

2.1.1 Specific model processing

2.1.1.1 Data
The COBOL program in Appendix 1 includes a “DATA DIVISION” section. This section itself contains
“records” required in the program. Once the code below is parsed, one obtains the model in Figure 4.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *
 01 COMPTEURS.
 *
 05 COMPTEUR-A PIC 9 VALUE
 1.

Public

Copyright  REMICS Consortium 2010-2013 Page 8 / 18

Figure 4 – SASTM (partial) instance diagram of the “DATA DIVISION” section

2.1.1.2 UIs
In this document’s example, UIs are also described in the “DATA DIVISION” section, more precisely,
in a “SCREEN SECTION”:

Once the code above is parsed, one obtains the model in Figure 5.

SCREEN SECTION
01 AFFICHAGE.

 05 CONSTANT.
10 FILLER AT 01, 01 VALUE

 “Compteur:”.
 05 SC-FIELD.
 10 SC-COMPTEUR-A AT 01, 11 PIC 9
 FROM COMPTEUR-A.

Public

Copyright  REMICS Consortium 2010-2013 Page 9 / 18

Figure 5 – SASTM (partial) instance diagram of the “SCREEN SECTION”

2.1.1.3 Code
In COBOL, the “PROCEDURE DIVISION” contains procedural statements, for example:

Public

Copyright  REMICS Consortium 2010-2013 Page 10 / 18

Once the code above is parsed, one obtains the model in Figure 6.

Figure 6 – SASTM code instance diagram

By definition, models computed in this first phase are legacy technology-specific, i.e., they conform to
a tailored SASTM metamodel. To move to legacy technology-independent models (GASTM),

A000-MAINLINE.
 PERFORM 1-INCREMENT THRU 1-INCREMENT-EXIT.
 PERFORM 1-DISPLAY THRU 1-DISPLAY-EXIT.

A000-EXIT. EXIT PROGRAM.

 1-INCREMENT.

 ADD 1 COMPTEUR-A.
 1-INCREMENT-EXIT. EXIT.

 2-DISPLAY.

 DISPLAY BASE AFFICHAGE.
 DISPLAY COMPTEUR-A.
2-DISPLAY-EXIT. EXIT.

Public

Copyright  REMICS Consortium 2010-2013 Page 11 / 18

transformations are required. These generic models are called pivot models because they are not final
models at the end of the processing chain. They aim at recomposing the overall coherence of the
legacy stuff to create “semantic” models.

2.2 From SASTM to GASTM
To move to GASTM models, transformations are written with the help of a transformation language
like ATL or a programming language like Java. These transformations are the core of the BLU AGE®
engine. A key issue is the organization and the modularization of many simple transformations to
avoid writing some of them legacy technology per legacy technology. We mean, some are fixed while
some are dependent upon the deep nature of the given processed COBOL, say the dialect used in
this document’s example.

2.2.1 Data generalization
Any “record” from the “DATA DIVISION” section is transformed in a “neutral” data structure with a
type. Note that in COBOL, declarations and definitions are not distinguished. The result of such a
transformation appears in Figure 7.

Figure 7 – GASTM instance diagram resulting from the data transformation of the model in
Figure 4

2.2.2 UIs generalization
COBOL “displays” are subject to equivalent transformations.

Public

Copyright  REMICS Consortium 2010-2013 Page 12 / 18

Figure 8 – GASTM instance diagram resulting from the UIs transformation of the model in
Figure 5

There is a slight inconvenient (i.e., a semantics loss) in the model appearing in Figure 8. Description
information of screen properties and their mapping with data of the initial legacy code are not
appearing in the model. More generally, this proves the lack of complementarity and articulation
between ASTM on one side and KDM on another. At this stage, the legacy stuff is only represented by
means of ASTM but persistent data and UIs typically aim at later being modeled as KDM first-class
objects. We show in the next section and in the EKDM section of this document how to avoid
semantics losses.

2.2.3 UIs extraction
A UI metamodel is immediately required to avoid information losses as discussed above. This
metamodel is an extension of the UI KDM metamodel (see also D3.1 about KDM). This metamodel
has been built up to have a generic description of textual UIs. Figure 9 shows how this metamodel
allows the possibility to “keep” information about screen properties in relation with the data managed in
UIs. For example, the “SC-COMPTEUR-A” variable is both viewed as a piece of a data structure
(Figure 8) and a UI element (Figure 9).

How, apart from the two values (“SC-COMPTEUR-A”) of the nameString (Figure 8) attribute and name
attribute (Figure 9), there is no explicit intelligible mapping between the two models. So, extending
KDM is not only a matter of extraction but also of reconstruction of semantic dependencies between
legacy artifacts. In this case, in GASTM, because of the generic nature of GASTM models, links
between legacy-neutral data structure representations and legacy-neutral UI representations is
required (see EKDM section below).

Public

Copyright  REMICS Consortium 2010-2013 Page 13 / 18

Figure 9 – Instance diagram of a textual field model

2.2.4 Code generalization, example of COBOL statements
COBOL statements are transformed into generic and easily interpretable representations (Figure 10).
In Figure 10, there is an illustration with an “Add” COBOL action. A neutral form of the behavior of
such a statement is stated.

Figure 10 – COBOL “Add” action from Figure 6, generalized

At this stage, the availability of GASTM models creates a sound break with the legacy material. Even if
most of this material is GASTM-compliant, a first extension of KDM named TUI (standing for Textual
UI) is required to model UIs as layouts in old applications/information systems.

ASTM models in general provide a satisfactory overview that result from parsing all of the legacy
artifacts. However, all concepts are from programming language notions like “expressions” and so on.
This representation gives no value about data/control flows showing execution details. Beyond, more
abstract views are required in KDM to augment the captured intelligence in the legacy
application/information system: components/services, architecture and business rules. For that, EKDM
aims at complementing the GASTM views by creating a gateway between the ASTM and KDM worlds.

Public

Copyright  REMICS Consortium 2010-2013 Page 14 / 18

2.3 EKDM

2.3.1 Separation of “macro” and “micro” code representations
While “micro” representations intend to give a rich set of details, “macro” representations emphasize
key actions at the code level like CRUD actions for example and execution flows in general towards
components/services and architecture patterns/forms.

2.3.2 GASTM encapsulation within KDM
The followed strategy is the encapsulation of GASTM within KDM by means of EKDM.

Using MicroCodeModel from EKDM that implements the KDMModel interface belonging to the kdm
package of KDM is the major way by which encapsulation occurs. As an example, the GASTM model
in Figure 9 is “surrounded” by a KDM model.

Figure 11 – ASTM model encapsulated within KDM

The “micro” representation of the code is thus realized through ASTM with a ported access to KDM.

2.3.2.1 “Macro” actions’ production
The goal of this production (transformation suite) is to have a more abstract view. Namely, EKDM
MacroActionElement objects are created for each Statement object in ASTM. This allows the definition
of semantic relationships between MacroActionElement objects and KDM objects. Figure 12 is an
illustration.

Public

Copyright  REMICS Consortium 2010-2013 Page 15 / 18

Figure 12 – “macro” and “micro” action representation

Mapping information is not treated here but in the next section.

2.3.3 Construction of mappings between code, UIs and data
Mappings are introduced from captures of information in the legacy application/information system of
interest. Mappings are instances of the UIMapping and DataMapping from EKDM (see also D3.1).
Mappings create the very last glue between several legacy elements partially and previously
represented under several angles and metamodel perspectives.

Public

Copyright  REMICS Consortium 2010-2013 Page 16 / 18

Figure 13 – code/UIs mapping example

2.3.4 Generation of relationships
From an analysis of the representation of “micro” actions (with possible manual intervention), a
generation of “semantic” relationships between the different KDM objects occurs. The same occurs for
“macro” actions and mappings afterwards.

Public

Copyright  REMICS Consortium 2010-2013 Page 17 / 18

Figure 14 – code “macro” representation with semantic relationships

Public

Copyright  REMICS Consortium 2010-2013 Page 18 / 18

Appendix I- Legacy code

 IDENTIFICATION DIVISION.
 *
 PROGRAM-ID. COMPTEUR.
 *
 AUTHOR. XXX.
 *
 DATE-WRITTEN. 0001-01-01.
 ENVIRONMENT DIVISION.
 *
 CONFIGURATION SECTION.
 *
 SOURCE-COMPUTER.
 *
 XXX.
 OBJECT-COMPUTER.
 *
 XXXX.
 SPECIAL-NAMES.
 *
 DECIMAL-POINT IS COMMA.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *
 01 COMPTEURS.
 *
 05 COMPTEUR-A PIC 9 VALUE
 1.

SCREEN SECTION
01 AFFICHAGE.

 05 CONSTANT.
10 FILLER AT 01, 01 VALUE

 “Compteur:”.
 05 SC-FIELD.
 10 SC-COMPTEUR-A AT 01, 11 PIC 9
 FROM COMPTEUR-A.

PROCEDURE DIVISION.
 A000-MAINLINE.
 PERFORM 1-INCREMENT THRU 1-INCREMENT-EXIT.
 PERFORM 1-DISPLAY THRU 1-DISPLAY-EXIT.

A000-EXIT. EXIT PROGRAM.

 1-INCREMENT.

 ADD 1 COMPTEUR-A.
 1-INCREMENT-EXIT. EXIT.

 2-DISPLAY.

 DISPLAY BASE AFFICHAGE.

	Executive Summary
	Table of contents
	1 Introduction
	1.1 Terminology and Abbreviations
	1.2 Requirements traceability
	1.3 BLU AGE® REVERSE

	2 Using EKDM with the BLU AGE® REVERSE engine
	2.1 Artifact compilation
	2.1.1 Specific model processing
	2.1.1.1 Data
	2.1.1.2 UIs
	2.1.1.3 Code

	2.2 From SASTM to GASTM
	2.2.1 Data generalization
	2.2.2 UIs generalization
	2.2.3 UIs extraction
	2.2.4 Code generalization, example of COBOL statements

	2.3 EKDM
	2.3.1 Separation of “macro” and “micro” code representations
	2.3.2 GASTM encapsulation within KDM
	2.3.2.1 “Macro” actions’ production

	2.3.3 Construction of mappings between code, UIs and data
	2.3.4 Generation of relationships

	Appendix I- Legacy code

